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SECTION I

INTRODUCTION

The question of how much of the electromagnetic energy that exists on

one side of a wall can leak to the other side through a small opening in

the wall has become, by virtue of its practical importance, a canonical

problem in the theory of EMP (electromagnetic pulse) interactions (ref. 1).

As is well known, the earliest calculation of the transmission of an

electromagnetic wave through a small circular aperture in a plane screen

of perfect conductivity and zero thickness was performed by Lord Rayleigh.

Using potential theory, he calculated the transmitted field of a plane

harmonic wave normally incident on an electrically small circular aperture

(ref. 2). Years later Bethe derived expressions for the polarizabilities

and effective dipole moments of small circular apertures. His results

give the transmitted far field for any angle of incidence but not the

transmitted near field (ref. 3). Most recently Bouwkamp (ref. 4) and

Meixner and Andrejewski (refs. 5 and 6) found an exact solution for both

the near and far transmitted fields of a plane wave normally incident on

a circular aperture.

Aperture problems can, at least in principle, be solved numerically,

but they cannot be solved analytically unless the shape of the aperture

happens to be simple enough to permit a separation of the variables and a

scalarization of the electromagnetic field. However, from this it should

not be inferred that if the aperture problem cannot be solved analytically,

a numerical method is the only way to obtain a solution. Actually, as a

preferable alternative, one can reformulate the problem so that upper and

5Le



lower bounds on the true solution and not the true solution itself would

have to be sought. Such a reformulation can be based on Levine and

Schwinger's result that when the aperture is electrically small there

is a variational principle for the upper bound and another variational

principle for the lower bound (refs. 7 and 8). However, this variational

approach, which was used by Fikhmanas and Fridberg to find bounds on the

electric and magnetic polarizabilities of electrically small apertures

(ref. 9), does not lend itself to very easy calculation. Accordingly,

it is of some interest to try a simpler method of sandwiching the true

solution between upper and lower bounds.

In this report we shall examine how symmetrization, which has yielded

interesting results in geometry and mathematical physics (ref. 10), may

be used to establish two-sided bounds on the electric and magnetic polariz-

abilities of differently shaped convex apertures and therby estimate their

transmission properties in a simple economical manner.
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SECTION II

SYMMETR IZAT ION

Of the several kinds of symmnetrization that have been invented we

shall restrict our attention to the synmmetrization of a plane figure with

respect to a straight line. To symmnetrize a plane figure with respect to

a straight line L, we suppose the figure to consist of line segments that

are parallel to each other and perpendicular to L (figure 1). We thenj shift each line segment along its own line until the line segment is

bisected by L. The shifted line segments compose the symmnetrized figure.

For example, a semicircle of radius R, when symmnetrized with respect to its

bounding diameter, changes into an ellipse with semiaxes R and R/2. A

further symmnetrization can transform the ellipse into a circle of radius

R/2. Symmnetrization leaves the figure's area A unchanged and decreases,

or, more accurately, never increases its perimeter P. For the case shown

in figure 1, the area is always 7R2/2 and the perimeter varies from (2+ w)R

for the semicircle to irR for the circle.

As an instructive example, we apply the principle of symmietrization

to the calculation of capacitance C. It is known that the symmnetrization

of a plane conducting plate decreases (i.e., never increases) the electro-

static capacity of the plate (ref. 10). A plane figure symmnetrized

infinitely many times becomes a circle and, consequently, of all conducting

plates of a given area the circular plate has the minimum capacity. Accord-

ingly,

C > C (i)



SYMMETR I ZATI ON
L

* AREA UNCHANGED

* PERIMETER NEVER INCREASES

Figure 1. Example of Symetrization of a Plane Figure with Respect to

a Line L. The Semi-Circle of Radius R is Symmetrized with

Respect to its Bounding Diameter to Produce an Ellipse with

Semi-Axes R and R/2. The Ellipse, when Symmetrized, Becomes

a Circle or Radius R/2. The Area of Each Figure Remains Constant

but the Perimeter Decreases with Each Symmetrization.
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where C denotes the electrostatic capacitance of a plane conductinq

nlate and C denotes the electrostatic capacitance of the circular

olate of radius rin, that has been obtained by cnlletely syinetrizin(i

the original plate. This places a lower hound on C. To ohtain an

upper bound, we invoke the conjecture that of all plates with a given

perimeter, the circular plate has the maximum capacitance-(ref. TO).

Thus we find

Cout > C (2)

where Cou t is the electrostatic capacitance of a circular plate of

radius rout, whose perimeter is equal to that of the perimeter of the

original plate. From equations (1) and (2) it follows that

Cin C Cout (3)

Since we have

ri = (A/Tr) (4)

rout = P/27r (5)

and the electrostatic canacitance of a circular nlate (disk) in MKS units

is given by

C = 8c 0a (6)

where a is the radius of the disk and E is the dielectric constant of

free space, upon replacinq a by rin and rout we obtain from equations

(3) through (6) that the capacitance C of a plate of area A and peri-

meter P is delimited by

9



(A/<) C/8e < P/2T (7)

Here = (36)Y 1 x 10-9 farads per meter.

Both Maxwell (ref. 11) and Rayleigh (ref. 12) made unproven statements

concerning bounds on the capacitance of plates, which agree with equation

(7). Moreover, the capacitance of an elliptic plate of eccentricity e,

as given by

Cellipse/8Bo = (A) ( -e2 )'/2K(e2) - (A/) (I + e2/64) (8)
e-o

where K(e2) is the complete elliptic integral of the first kind (ref. 12),

clearly satisfies the left side of equation (7). To show that it also

satisfies the right side we only need to recall that for an ellipse

Pellipse /2n = 2(A/")E(e2)(l -e2)' /f _ (A/r)(l + 3e 2/64) (9)
e-o

where E(e2) is the complete elliptic integral of the second kind.

By virtue of the apparent validity of equation (7) for the capacitance

of plates of arbitrary size and shape we are led to believe that other

quantities of physical interest may be similarly sandwiched between

bounds involving only the purely geometric parameters A and P.

10



SECTION III

POLARIZABILITIES AND TRANSMISSION COEFFICIENTS OF SMALL APERTURES

Let us now consider the transmission of electromaqnetic energy

through an electrically small aperture which is located in a plane screen

of perfect conductivity and zero thickness. Since the aperture is small,

the fields on the shadow side of the screen appear to emanate from dipoles

located in the aperture. These electric and magnetic dipoles, having

moments p and m, radiate in free space and are linearly related to the

incident traveling wave through the vector electric nolarizability with

components ai and the dyadic magnetic polarizability with components qij"

That is,

= inc (i = 1,2,3) (In)Pi Cl

2
2 _ i nc (i = 1,2) (11)

where uo = &7r x in"7 henries per meter. The incident electric and

magnetic fields are plane waves of the form Eincexn i (k.r-wt) and

Hncex i(k-.r-Wt) where r is the position vector, k is the wave vector

and w is the frequency.

For a circular aperture of radius a the polarizahilities are

given by the simple expressions

circle = a 3  i (i = 1,2,3) (12)
1i 3

circle = IF (i,j = 1,2) (13)
1 Aj



where ij 10 i*tj

The values 1, 2 and 3 correspond respectively to the directions

0 and n" The aperture plane is defined hy the unit vectors @I, and .

and the normal (pointing toward the shadow side) is defined hy i'n

@I, x @ (figure 2). The polarizabilities are defined here for

incident traveling waves and for dipoles radiating in free snace. For

short circuit incident fields and for dipoles radiating in the presence

of a conducting wall, all values of the Dolarizabilities should be

divided by the numeric 4.

For elliptic apertures with semi-axes a and b along 4 and @

respectively we have

ellipse 
4 r ah2cti w a , 2(14)

3 I 613

2 24r ab e (15)
I (-e 2)FK(e2)-F(e2)1

,ellipse =

Ij4r ah 2 e2  (l)
F(e2)- l-e2)K(e2  i2

where e = (-b2/a2) is the eccentricity of the ellipse and K(e2 ) and

E(e2 ) are elliptic integrals of the first and second kind (ref. 13).

The transmission coefficient T is defined as the ratio of the

total far-field power transmitted through the aperture divided by the

total power incident on the aperture. For the case where the principal

axes of magnetic polarizability dyadic correspond to li, and @ .we find

12
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k 4 2sin2 ( 8 a2sin 2x + 862 COS2 X)(Cos 2y)(17

or polarizationr Here y is the angl:lof incidence, i.e.,

the angle between kan and ndX h nl between H n  and Aj for
_ gan is _inc andein

parallel polarization and is the angle between E ande for perpendi-

cular polarization (figure 2).
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SECTION IV

BOUNDS ON POLARIZABILITIES AND TRANSMISSION COEFFICIENT

Imitating the procedure we followed to establish bounds on the

capacitance of Dlates, we now construct bounds on the mean magnetic

polarizability am of a convex aperture by replacing the radius a, which

appears in expression (13) for the polarizability of a circular aperture,

by rin(4 ) and rout (5) of the aperture. Thus we get

IT,(A) 3 2  m -( PL) 3  (18)

where by definition am (all + B22)/2.

To test the plausibility of equation (18) we examine several

special cases. For the elliptic aperture of small eccentricity (e<< 1),

equation (18) becomes

16 (A )3/2 <a 16 ( A) 3/ 2 (1 +--e4) (19)3 i -m T )3/24

equations (15) and (16) yield

16= ( A)3/2 e +.4) (20)

and thus we clearly see that equation (18) is satisfied in the case of

mildly eccentric ellipses. It can also be shown that equation (18) holds

true for elliptic apertures of arbitrary eccentricity (0 <e < 1) and for

other convex apertures such as the rectangular and the rhombical aperture

(refs. 14 and 15). The fact that these test cases are in complete agreement
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with equation (18) leads us to believe that the assertion (18) is valid

for dli convex apertures.

Accepting the general validity of equation (18) and recalling that

symmetrization reduces P without changing A we conclude that of all convex

apertures of fixed area A the circular aperture possesses the smallest

mean magnetic polarizability.

The electric polarizability contributes to transmission through

small apertures only when the incident wave is obliquely incident and

polarized parallel to the plane of incidence. To construct bounds for

the electric polarizability we note that, for a circular aperture of

radius a and area A, equation (12) can be written as

circle 8 A2

01i 'e -7 i 613(21)
37r

Then by'replacing the radius a of this expression by rin(4) and rout(5)

we arrive at

16 A2 ( (22)

To test the plausibility of equation (22) we again consider the case of

a mildly eccentric ellipse (e << 1). In this case equation (22) becomes

8(A)3 /2 (1 - e4) < llipse < q (23)

and from equation (14) we have

l ellipse 8A )3/2  e4 (24)

16



Obviously, expression (24) is equal to the lower bound in equation (23).

Furthermore, with the aid of equation (14) it can be verified that the

lower bound in equation (22) is precisely the value of the electric

polarizability of ellipses of arbitrary eccentricity (refs. 9 and 15).

Also, we note that the electrical polarizabilities of rectangular and

rhombical apertures satisfy equation (22) (refs. 14 and 15).

Assuming the validity of equation (22) and invoking symmetrization,

we find that of all convex apertures of fixed area the circular aperture

possesses the largest electric polarizability.

The bounds that have been proposed for the electric (22) and mean

magnetic (18) polarizabilities can be used to obtain bounds on the

transmission coefficient (17). In some modern applications the quantity

of interest is the upper bound for the case where the incident wave is

directed and polarized to maximize the transmission through the given

aperture. Clearly, maximum possible transmission through a given aperture

occurs when the incident wave is parallel polarized and is made to fall

on the aperture at grazing incidence. To find the upper bound for maximum

possible transmission we use equation (22) and note that rout rin. Thus

asin 2Y 64 (A\3  4/P)6 (5

Moreover, in view of equation (18) we can write

2 s2 +2 2< 1024
011 in+ 22 CosX<~(6

17



Substituting equation (25) into equation (26) into equation (17) we thus

obtain the following expression for the maximum possible trar'mission

through a small aperture of area A and perimeter P

~ < 68(P/X)6  (27)

277r3(A/X2)

where X = 2v/k is the wavelength of the incident radiation.

Since symmetrization reduces P and keeps A unchanged we see from

expression (27) that the maximum possible transmission decreases as the

aperture is symmetrized. This is, the maximum possible transmission

decreases as the shape of the aperture approaches that of a circle (ref. 16).

18
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SECTION V

CONCLUSIONS

By delimiting the polarizabilities of a small convex aperture of

arbitrary shape and given area we have found upper and lower bounds on its

transmission coefficient. Symmetrizinq the aperture we see that the

maximum possible tranmission decreases as the shape of the aperture ap-

proaches that of a circle. For example, the maximum possible transmission

decreases as the shape of the aperture is changed from that of an equi-

lateral triangle to that of a square and finally to that of a circle.

The bounds are simple to evaluate from a knowledge of the aperture's

area and.perimeter and therein lies the desirability and economy of this

method.

It appears that this method of estimation can be generalized to

handle other boundary-value problems and thus provide information as to

how their solutions are modified when there is a change of shape.

r4
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